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Abstract—Bimanual robotic manipulation remains a funda-
mental challenge due to the inherent complexity of dual-arm
coordination and high-dimensional action spaces. This paper
presents the entended YOTO++ (You Only Teach Once), which
is a unified one-shot learning framework for teaching bimanual
skills directly from third-person human video demonstrations.
Our method extracts structured 3D hand motions using binocular
vision and distills them into compact, keyframe-based trajectories
for dual-arm execution. We develop a scalable demonstration pro-
liferation strategy that synthetically augments one-shot demon-
strations into diverse training samples, enabling effective learning
of a customized bimanual diffusion policy. Extensive evaluations
across a broad spectrum of long-horizon bimanual tasks, includ-
ing asynchronous, synchronous, contact-rich, and non-prehensile
scenarios, demonstrate strong generalization to novel skills and
objects. We further introduce a visual alignment mechanism at
the initial manipulation stage for closed-loop control, enabling
the system to dynamically adapt to perturbations during exe-
cution. We validate the framework on a new dual-arm robotic
platform to show seamless cross-embodiment transfer without
additional retraining. YOTO++ achieves impressive performance
in accuracy, robustness, and scalability, advancing the practical
deployment of general-purpose bimanual manipulation systems.
The project link is https://hnuzhy.github.io/projects/YOTOPlus.

Index Terms—Bimanual robotic manipulation, one-shot imita-
tion learning, human demonstration, hand movements.

I. INTRODUCTION

B IMANUAL manipulation is an enduring topic in the
robotics community [1]–[5]. It has been widely involved

in many other fields such as bionics, high-end manufactur-
ing, mechanical control, reinforcement learning and computer
vision. Despite this, achieving efficient, precise and robust
manipulation of dual-arm robots to accomplish various daily
tasks remains a difficult research area. Generally, there are
two main challenges: coordination and state complexity [6],
[7]. On the one hand, the two arms working together need
to move alternately or simultaneously in a coordinated, non-
procrastinated manner and avoid collisions with the scene
or each other. This places stringent demands on the control
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and scheduling scheme. On the other hand, the total degrees
of freedom of two arms and their respective end effectors
are distributed in a higher-dimensional space than a single
arm. This makes the design of motion planning and action
prediction more challenging. Given these difficulties, it is no
small feat to drive two robot arms to perform tasks that human
toddlers can do with ease, such as uncovering lids, assembling
blocks and lifting large-size objects, let alone mastering many
more complex long-horizon skills.

The mainstream bimanual manipulation research includes
two major branches: explicitly classifying tasks based on
pre-defined taxonomy [6]–[8] and implicitly learning from
demonstrations collected by teleoperation [9]–[11]. The former
often fails to uniformly cover arbitrary tasks and also limits
the flexibility of the robot arm. While the latter requires
substantial training data which is inconvenient to scale up.
And collected demonstrations are intrinsically non-stationary
and despatialized, which is not conducive to training robust
and generalizable action policies. In addition to taxonomy and
teleoperation, an indirect but more plausible and interpretable
route is to learn from human action videos [12]–[17]. This
route is based on relatively mature vision techniques to pro-
cess human demonstrations and extract high-level features for
generating robot manipulation-relevant elements. In this paper,
we also follow this promising path. Our dual-arm workbench,
hardware settings, and selected bimanual tasks are shown in
Fig. 1. The overall framework is shown in Fig. 2.

Specifically, we focus on understanding human hands, in-
cluding their location, left-rightness, 3D shape, joints, pose,
contact, and open/closed state. These features can be perceived
using hand-related vision methods [18]–[20]. After extracting
hand motion trajectories, we do not simply inject step-wise
actions into robots. Because visual perception results are
inevitably erroneous, and real hand motions are jittery and
discontinuous. We thus simplify the consecutive trajectory into
discrete keyframes [21], [22], and assign the corresponding
keyposes to two arms to execute by applying inverse kine-
matics interpolation. Besides, we also record and replay the
order of dual-hand movements (termed as motion mask), which
can help to address the dual-arm coordination issue in long-
horizon bimanual tasks. Now, we successfully obtain a stable
and refined manipulation motion exemplar.

More than that, thanks to the editability of obtained single
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Fig. 1. Our proposed YOTO++ (You Only Teach Once) enables cross-embodiment deployment (from the contralateral to humanoid dual-arm setups), and
facilitates diverse bimanual tasks including asynchronous , synchronous and tool-using scenarios, with closed-loop control under dynamic disturbances during
pre-grasping. Notably, it needs only the one-shot observation of a third-person binocular camera to extract the fine-grained motion trajectory of human hands,
which can then be utilized for the dual-arm coordinated action injection and rapid proliferation of training demonstrations.

teaching, we devise rapid proliferation strategies of training
demonstrations. First, we change the 6-DoF pose of task-
related objects and adjust corresponding keyposes to let real
robots replay similar actions. Objects can also be replaced
with other ones of analogous shape and size. This auto-rollout
operation is more stable and faster than teleoperation [9], [23].
For example, we can collect about 300 demonstrations in about
6 hours based on a well-taught task. On the other hand, after
knowing the reachable area of manipulators, we can perform
geometric transformation on segmented object point clouds,
which can be extracted by using open vocabulary segmen-
tation [24], [25] and binocular stereo matching [26], [27].
Such augmentation is more reliable and efficient than rollout.
Therefore, mixing the above two data expansion schemes, we
call it proliferation, just like the generation of cells.

With sufficient training data, we follow diffusion-based
visuomotor imitation methods [28]–[30] and propose a special-
ized bimanual diffusion policy (BiDP), which is customized
for learning long-horizon dual-arm tasks. It has three major
improvements. First, we replace observations (e.g., 3D point
clouds) from the entire scene to manipulated objects to accel-
erate training convergence and eliminate irrelevant terms [7],
[31]. Then, instead of modeling continuous actions, we choose
to predict essential keyposes [32]–[35], which can greatly
reduce the diffusion space dimensionality. Third, we utilize the
motion mask to determine alternating or synchronous dual-arm
moving, and reorganize the bimanual action space to train a
unified action policy. In experiments, we have verified the high
efficiency and effectiveness of BiDP on various challenging
tasks. Overall, we have the following contributions:

• We present a paradigm for extracting and injecting dual-arm
movements from a one-shot observation of human hands
demonstration, which supports the fast transfer of bimanual
manipulation skills to two robotic arms.

• We develop a solution for rapidly proliferating training
demonstrations based on one-shot teaching, which is more
convenient and reliable than teleoperation.

• We propose a dedicated bimanual diffusion policy (BiDP)
algorithm that can efficiently and effectively assist dual-arm
manipulators in imitating complex skills.

YOTO++ is an expansion of our previous conference work
YOTO [36], in which we introduce several new components to
enhance its functionality and comprehensiveness. Specifically,
we have the following new contributions.

• YOTO++ incorporates a vision-based pre-grasping align-
ment module of each task, enabling closed-loop control that
can robustly handle dynamic disturbances.

• YOTO++ can handle long-horizon contact-rich tasks, such
as tool-use scenarios, by extracting and executing tempo-
rally consistent multi-stage actions through discretized yet
semantically essential keyframes.

• YOTO++ supports a richer set of primitive skills, demon-
strating its compatibility with up to 10 diverse bimanual
manipulation tasks, covering both synchronous and asyn-
chronous coordination patterns.

• The cross-embodiment adaptability of YOTO++ is validated
by deploying it on a humanoid dual-arm robot, showcasing
its platform-agnostic nature and real-world applicability
across diverse robotic morphologies.
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II. RELATED WORKS

Bimanual Robotic Manipulation. Many bimanual ma-
nipulation methods focus on specialized tasks or primitive
skills, such as cloth-folding [37]–[39], bagging [40], [41],
handover [42]–[44], untwisting [45] and dressing [46]. For
general bimanual manipulation, typical research [1], [8], [47]–
[50] tends to explicitly classify them into uncoordinated and
coordinated, or symmetrical and asymmetrical according to
task characteristics. Some homologous approaches assume that
two arms form a leader-follower [6], [51] or stabilizer-actor
[7], [52] pair. Most recently, the ALOHA series [9], [53]–
[55] have revolutionized bimanual manipulation by dexterous
teleoperating and upgrading low-cost hardwares of real-world
robotics. These similar works [9], [11], [56]–[58] implicitly
train an end-to-end imitation network using massive and
diverse teleoperated data, expecting to get generalized large
robotic models. To further improve dual-arm reachability and
dexterity, some studies have equipped multi-finger hands [23],
[59]–[62], mobile footplates [30], [53], [63], tactile feedbacks
[59], [64], [65] or active cameras [66], [67]. In contrast to
them, our manipulators are two fixed-base robot arms with
parallel-jaw grippers. We propose an universal framework that
learns bimanual policies with considering the dual-arm coordi-
nation. And the training data is not collected via teleoperation
but proliferated from a single-shot demonstration.

Learn from Human Hand Videos. Human hand videos
are valuable resources for learning complex manipulation
behaviors [68]–[72]. Extensive research has leveraged human
demonstrations to learn robot manipulation by extracting rich
non-privileged features, such as keypoints [13], [73], [74],
affordances [75]–[77], 3D hand poses [12], [15], motion tra-
jectories [14], [15], [17], invariant correspondences [16], [78],
[79] and hand-object interaction [80]–[82]. These features can
be tailored to robot-specific variables to alleviate morphology
gaps, such as manipulation plans, retargeted motions and
precise actions. Two contemporary works [15], [17] also
propose to use a single human demonstration to learn bimanual
manipulation similar to us. RSRD [17] roughly recovers 3D
part motion of articulated objects from a monocular RGB
video, while we adopt a binocular camera to more accurately
capture arbitrary object in 3D space. OKAMI [15] applies
the object-aware motion retargeting which is noisy and non-
smooth, while we devise a keyframes-based motion extraction
scheme which is more robust and versatile.

Visuomotor Imitation Learning. Visuomotor imitation
learning aims to train action prediction policies based on
visual observations by exploiting labeled demonstrations [21],
[22], [83]–[85]. These learned policies can drive robots to
complete various manipulation with just dozens of demon-
strations, covering dexterous [23], [29] and bimanual [9],
[60] tasks. Especially, ALOHA [9] introduced the action
chunking transformers (ACT) to learn high-frequency con-
trols with closed-loop feedback in an end-to-end manner. DP
[28] adopted conditional denoising diffusion models [86]–
[88] to represent visuomotor policies in robotics, exhibiting
impressive training stability in modeling high-dimensional
action distributions. DP3 [29] incorporated 3D conditioning

into the original diffusion policy [28], rather than focusing on
RGB images and states as conditions. EquiBot [30] combined
SIM(3)-equivariance [89]–[91] with diffusion policy, acquiring
a more generalizable and sample-efficient visuomotor policy
than [28], [29]. Inspired by them, we propose a bimanual
diffusion policy (BiDP), which adds motion mask as a new
diffusion condition and simplifies visual observations to task-
related object point clouds, making it suitable for learning
bimanual manipulation tasks.

III. HARDWARE SYSTEM

Dual-Arm Placement: Most human video-inspired biman-
ual manipulation works apply humanoid robots [12], [13],
[15]–[17] or two ipsilateral arms [13] to build workstations.
Some bimanual teleoperations also tend to be anthropopathic
[59]–[61], [67] or ipsilateral [23], [64], [65]. Despite the
similarity to human morphology, they are not necessarily op-
timal. Comparatively, it is possible to place two manipulators
opposite each other, as in ALOHA series [9], [53]–[55] and its
followers [11], [58], [66]. This heterolateral setup minimizes
the overlap of accessible space and is thus compatible with a
wider range of bimanual tasks. As shown in Fig. 1 left, we
adopt the contralateral placement, where each arm (Aubo-i51)
has a span of 880 mm. In addition, we also arrange a humanoid
dual-arm robot for cross-embodiment testing, where each arm
(Estun ER72) and has a span of 910 mm.

End Effector Selection: Although some methods utilize
multi-fingered dexterous hands as end effectors [23], [60],
[61], [67] and even add tactile sensors [59], [64], [65] to hands,
we use two parallel-jaw grippers (with max opening distance
80 mm of each DH-Robotics3 for Aubo i5, or 75 mm of each
Jodell RG754 for Estun ER7), which are easier to control and
interpret. We will show that it is sufficient to complete complex
tasks that are inherently non-prehensile or synchronous.

Camera Observation: Many previous methods adopt the
multi-view RGB observations [9], [11], [58], mainly including
the global third-person camera and the local eye-in-hand cam-
era. Other works have shown that a single third-person RGB-
D camera [12], [13], [15], [23] is also acceptable. We use a
binocular stereo camera (the DexSense 3D industrial camera5),
similar to commercial RGB-D cameras, but providing raw left
and right images to enable flexible post-processing.

IV. METHOD

In this part, we introduce in detail the proposed framework
YOTO++, which contains three major modules that are il-
lustrated in Fig. 2. We firstly give a basic definition of the
problem in Sec. IV-A. Then, a detailed explanation of the three
core modules is presented, which includes the standardized
hand motion extraction and injection process in Sec. IV-B,
the demonstration proliferation solution from one teaching in
Sec. IV-C and the proposed visuomotor bimanual diffusion

1https://www.aubo-cobot.com/public/i5product3
2https://en.estun.com/?list 110/1766.html
3https://en.dh-robotics.com/product/pgi
4https://www.jodell-robotics.com/product-detail?id=5
5https://dexforce-3dvision.com/productinfo/1022811.html
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Fig. 2. The overview of our proposed YOTO++. It is a general framework consists of three main modules: (a) the human hand motion extraction and injection,
(b) the training demonstration proliferation from one-shot teaching, and (c) the training and deployment of a customized bimanual diffusion policy (BiDP).
It is best to zoom in to view the details.

policy (BiDP) method in Sec. IV-D. Finally, in Sec. IV-E, we
explain how to incorporate a visual alignment mechanism for
initial grasping to achieve closed-loop control of YOTO++.

A. Problem Formulation

In this paper, we mainly consider bimanual robot manipula-
tion tasks, where the agent (e.g., dual manipulators equipped
with parallel-jaw grippers) does not have access to the ground-
truth state of the environment, but visual observations O from
a binocular camera and robots proprioception states S. As for
the action space A = {ap ∈ R3, ar ∈ SO(3), ag ∈ {0, 1}},
it includes the target 6-DoF pose of each robot arm and
the binary open/closed state of the gripper. Note, we focus
on bimanual tasks sharing the same observations O. For the
chirality, we utilize ⋄ ∈ {L,R} to distinguish two robot
arms, such as SL, SR, AL and AR. The same applies to the
difference between left and right hands below.

For imitation learning, the agent mimics manipulation plans
from labeled demonstrations D = {(O,A)i}Ni=1, where N
is the number of trajectories, O = {Ot, S

L
t , S

R
t }Tt=1 are

observations of all T steps, and A={AL
t , A

R
t }Tt=1 are actions

to complete the task. The learning objective can be simply
concluded as a maximum likelihood observation-conditioned
imitation objective to learn the policy πθ:

ℓ = E(O,A)i∼D

[∑|O|

t=0
log πθ(A

⋄
t |Ot, S

⋄
t )

]
. (1)

Next, we present how to obtain sufficient training demon-
strations proliferated from only a single-shot human teaching
and how to improve existing diffusion-based imitation policies
for addressing the bimanual manipulation problem.

B. Hand Motion Extraction and Injection

This part corresponds to the module in Fig. 2 (a).We first
manually demonstrate a long-horizon bimanual task using two

hands on the dual-arm accessible operating table. Then, we
leverage favourable vision techniques to extract rich manip-
ulation features from recorded videos by a single binocular
camera. Extracted features will be post-processed to obtain
keyframes-based motion variables (such as 6-DoF poses and
gripper states) that can drive dual arms.

1) Human Demonstration Capturing: By default, we cap-
ture dual-stream synchronized RGB videos with slight nec-
essary visual difference between left and right cameras to
estimate disparity and depth map. We mainly observe the left
RGB view to extract a series of hand-related features, and
thus always keep both hands visible to the left camera. The
right view is only awakened when accurate 3D information is
needed in a particular frame. This reduces the computational
burden of stereo matching [26] by at least half.

2) High-Level Features Extraction: Given a video demon-
stration (the left stream) of one specified bimanual task, we
run our vision perception pipeline to obtain the 3D point
trajectories and status of two hands.

3D point trajectories. We first use WiLoR [18] to detect
bounding boxes of left and right hands in each frame and
then estimate their 3D shapes HL and HR represented by
MANO [92]. Then, we simply track the center point hp,⋄

j =
(x⋄

j , y
⋄
j , z

⋄
j ) of each hand and obtain the 3D hands sequence

H = {(H⋄
j , h

p,⋄
j )}Jj=1, where ⋄ is the chirality and j is the

index among all J frames. The hp,⋄
j can be calculated by

averaging several selected points (e.g., five finger tips) from
21 pre-defined joints of the 3D hand model H⋄

j .
As of here, many similar works [15], [17], [61], [67] choose

to retarget the produced continuous trajectories {hp,⋄
j }Jj=1 to

their end effectors through estimated 3D geometric transfor-
mations. However, considering the inherent errors of hand-
related vision algorithms in left-right classification and 3D
shape regression, we cannot fully trust trajectories directly
derived from them. In particular, current state-of-the-art 3D
hand mesh reconstruction methods, such as WiLoR [18] and
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Algorithm 1 3D Hand Pose Calculation.
• Input: 3D hand shapes H⋄

j , index array of 21 pre-defined 3D
hand joints Ihand, index numbers of wrist joint iwri / index-fingertip
iind / ring-fingertip iring, the given chirality ⋄ = L or ⋄ = R.
• Output: 3D hand poses hr,⋄

j . // either L or R
Initialize P⋄

j ← MANO(H⋄
j , Ihand); // 3D hand joints indexing

pwri ← P⋄
j [iwri], pind ← P⋄

j [iind], pring ← P⋄
j [iring];

liw ← (pind − pwri), lrw ← (pring − pwri); // two 3D lines
vz ← CROSS PRODUCT(liw, lrw); // Z-axis direction
v̄z ← vz/(NORMALIZE(vz) + 1e-8); // vector normalization
vy = lmid ← (liw + lrw)/2.0; // middle line (Y-axis direction)
v̄y ← vy/(NORMALIZE(vy) + 1e-8); // vector normalization
v̄x ← CROSS PRODUCT(v̄y, v̄z); // X-axis direction
vrot ← CONCATENATE([v̄x, v̄y, v̄z]); // final 3×3 rotation matrix
return vrot;

HaMeR [20], still cannot achieve continuous and consistent
prediction in a given camera space. This is also pointed out
and verified by DexCap [23]. More examples can be found in
Fig. 6. As an alternative, we propose to project all 3D points
{hp,⋄

j }Jj=1 onto the 2D image, and then lift these points to
3D by applying the stereo matching algorithm [26]. The final
back-projected 3D point trajectories are {ĥp,⋄

j }Jj=1, which are
guaranteed to be more stable in the given camera space.

States of two hands. In order to fully map hand movements
to two-fingered grippers, we also need to determine the 3D ori-
entations hr,⋄

j and open/closed states hg,⋄
j by further observing

3D hands H⋄
j . Here, we can estimate the open/closed state by

detecting if the hand is in contact with an object [19]. If there
is contact, the hand is considered closed (hg,⋄

j =0), otherwise
open (hg,⋄

j =1). This is more trustworthy than relying solely
on hands to estimate status. For calculating 3D hand poses
hr,⋄
j , we need to simplify the hand into a lower-dimensional

gripper, which is analogous to the eigengrasping [93], [94].
We summarize this process in Alg. 1. To this point, we have
obtained the rough motion trajectories purely based on human
hand videos {(ĥp,⋄

j , hr,⋄
j , hg,⋄

j )}Jj=1.
Additionally, we adopt cutting-edge vision algorithms (in-

cluding the vision-language model Florence-2 [24] and SAM2
[25]) to extract segmented manipulated objects from the left
initial image as our disturbance-free visual observations Ô,
which will be further lifted to 3D point clouds Õ by applying
stereo matching approaches [26], [27].

3) Robot Actions Injection: Although we have obtained
robot-oriented motion trajectories, their validity and usability
are still concerns. For example, some target poses may be
unreachable for the failed inverse kinematics. Due to agnostic
structures, two arms may collide at some point. An obvious
approach is to replay and verify the rationality of each action
step by step directly on real robots, but this choice is unsafe
and inefficient, considering that the total number of frames J
is usually about 100 to 200.

Keyframes-based motion actions. To this end, we turn to a
more reasonable and safer post-processing, namely keyframes-
based motion simplification and injection. Specifically, we
inherit the abstraction of a consequent demonstration into
discrete keyframes (a.k.a. keyposes) as in C2FARM [21]
and PerAct [22]. Keyframes are important intermediate end-
effector poses that summarize a demonstration and can be
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Fig. 3. Example of extracted trajectories with corresponding keyframes of
both left hand and right hand. It is best to zoom in to view the details.

auto-extracted using simple heuristics, such as a change in
the open/close end-effector state or local extrema of veloc-
ity/acceleration. This concept is widely used in long-horizon
manipulation studies [32]–[35]. Accordingly, we can just learn
to predict the next best keyframe, and use a sampling-based
motion planner to reach it during inference. We thus simplify
trajectories {(ĥp,⋄

j , hr,⋄
j , hg,⋄

j )}Jj=1 into a set of keyframes
{(h̃p,⋄

k , h̃r,⋄
k , h̃g,⋄

k )}Kk=1, where k is the index of K keyframes.
K is around 10 in our tasks (K≪J), which makes it much
more easier to quickly verify and correct errors. To inject
these keyposes into the dual-arm robot, we need to transform
them from the camera coordinate to the robot coordinate
using the pre-measured hand-eye calibration transformation
matrix. Usually, a real-robot verification takes about two or
three minutes. We finally update the verified trajectories into
Ã={(ãp,⋄k , ãr,⋄k , ãg,⋄k )}Kk=1, which consists of the successfully
injected K robot actions. An elaborate example of extracted
keyframes is shown in Fig. 3.

Derivation of motion mask. Additionally, we should al-
ways care about the dual-arm spatial-temporal coordination,
which is one of the core issues of bimanual manipulation.
Fortunately, when we extract the hand motions, we already
have a time record in every frame, which represents the refined
keyframes-based set Ã naturally contains detailed timestamps.
Based on it, we can thus derive the corresponding coordination
strategy C = {(CL

k , CR
k )|C⋄

k ∈ {0, 1}}Kk=1, where C⋄
k means

the motion state of a robot arm at the k-th keyframe. The
binary value 0 means holding on, 1 means moving on. Given
this particularity, we name it motion mask to schedule robot
motion. A specific illustration of C for the pull drawer task
can be found in the down-left corner of Fig. 2. This example
is broadly applicable to strictly asynchronous bimanual tasks
(e.g., CL

k ̸= CR
k ). While, for fully synchronous manipulation

tasks, values of CL
k and CR

k in C keep the same. Currently, we
do not consider those long-horizon tasks where synchronized
and asynchronized keyframes are mixed.

In the following, we show that the extracted fine-grained
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keyframes-based motion actions Ã along with the correspond-
ing motion mask C will continue to play a vital role.

C. Demonstration Proliferation from One Teaching

Based on the one-shot teaching, we propose two demonstra-
tion proliferation schemes, the automatic rollout verification
of real robots and point cloud-level geometry augmentation of
manipulated objects. This solution is an efficient and reliable
route to quickly produce training data for imitation learning.
An example is shown in Fig. 2 (b).

1) Auto-Rollout Verification in Real-World: Formally, our
refined keyframes-based robot actions Ã are interpretable
and editable. These properties assist us to conduct automated
demonstration rollout verification and collection on real robots.
First, we can easily split Ã into two distinctive trajectories ÃL

and ÃR belonging to the left and right robotic arms based
on the motion mask C. Below is for decomposing strictly
asynchronous tasks.

ÃL = {(ãp,Lk , ãr,Lk , ãg,Lk )|CL
k = 1, CR

k = 0},
ÃR = {(ãp,Rk , ãr,Rk , ãg,Rk )|CL

k = 0, CR
k = 1},

K = |ÃL|+ |ÃR| = |Ã|/2,
(2)

where we actually eliminate K redundant keyposes for unilat-
eral arm waiting (holding on actions). For synchronous tasks
(|ÃL| = |ÃR| =K), we always have to drive both arms, so
there is no need to apply the motion mask.

The above allows two arms to disengage smoothly. Then,
we can precisely edit any keyframe in ÃL or ÃR closely
related to the manipulated object to align with its changed
keypose in real-world. We still take the pull drawer task (with
10 keyframes) as an example. When moving the object picked
up by the left arm, we need to adjust the 6-th keypose ãL6 =
(ãp,L6 , ãr,L6 , ãg,L6 ). For example, if we move the object 5 cm
along the X-axis positive direction, we then just add an offset
(0.05, 0.00, 0.00) to the position part ãp,L6 . Moreover, we can
also replace objects with similar shapes in the same position
to expand category diversity. Finally, we conduct the rollout
to get a new demonstration. The same is true for adjusting the
drawer manipulated by the right arm. Regardless of simplicity,
we compared auto-rollout with two popular data collection
methods, master-slave arm synchronization and drag-and-drop
teaching, and found that it is more efficient. See Tab. I for
the comparison. The other two ways are hampered by multi-
operators and higher failure rates.

2) Geometric Transformation of Point Clouds: Regarding
the above expansion of object positions and categories in real-
world, we still have to verify them one by one. We thus expect
to reliably augment visual observations of manipulated objects
(the extracted 3D point clouds Õ) any number of times, so
that theoretically infinite demonstrations can be obtained. In
the auto-rollout stage, we have initially figured out the cor-
respondence between manipulated objects and their relevant
keyframes. Now, we can perform geometric transformations
(mainly controlled rotations and translations) on the objects
at the point cloud level, and update the 6-DoF values in
the corresponding keyframes. In this way, matching pairs of
visual observations Õ and keyframes-based actions Ã can be

TABLE I
THE TIME COMPARISON OF DIFFERENT DATA COLLECTION OR EXPANSION

METHODS. WE REPORT THE AVERAGE COMPLETION TIME FOR 3 TASKS,
10 VALID TRIALS IN TOTAL FOR EACH TASK. THE † MEANS IT CAN BE

ACHIEVED BY DIRECTLY MODIFYING THE SCRIPT.

Methods Operators Arms
Long-Horizon Bimanual Tasks

pull
drawer (s)

pour
water (s)

unscrew
bottle (s)

Master-Slave 2 2 204.8 226.2 247.9
Drag&Drop 2 1 100.7 115.4 123.6
Auto-Rollout 1 1 41.5 52.1 51.4
Geo-Trans † 1 0 1.5 1.5 1.0

generated in batches, forming a series of new training data,
which no longer need to be verified in real robots. It should be
noted that the geometric transformation of Õ is restricted, that
is, it cannot exceed the reach of the robot arm. Fortunately, the
rational moving range of manipulated objects can be measured
during the auto-rollout phase incidentally. In Tab. I, we have
added the time comparison of this data proliferation, which
maintains the highest efficiency.

D. Bimanual Diffusion Policy Learning

In this part, we adapt popular visuomotor diffusion policies
[28]–[30], and propose a customized bimanual diffusion policy
(BiDP) to enable fast and robust imitation of long-horizon
tasks. We firstly shrink the input observations into task-
relevant object point clouds, allowing the policy model to
converge quickly and resistant to interference. Additionally,
we devise a motion mask to unify the action prediction and
address the dual-arm coordination problem.

Bimanual dataset composition. According to the defi-
nition in Sec. IV-A, we rewrite the training set as D̃ =
{(Õ, Ã,C)i}Ni=1, where N is the number of demonstrations.
C is the motion mask containing coordination strategies. D̃ is
generated by applying our proposed data proliferation solution
to expand the seeding one-shot teaching to get a large dataset
with hundreds or thousands of trajectories. Here, we update
Õ={Õk, S

L
k , S

R
k }Kk=1 and Ã={(ãp,⋄k , ãr,⋄k , ãg,⋄k )}Kk=1, where

Õk is the observation containing 3D point clouds of manip-
ulated objects instead of the entire RGB image [28] or point
clouds scene [29], [30]. SL

k and SR
k are robot proprioception

states with similar formats as actions S⋄
k=(s̃p,⋄k , s̃r,⋄k , s̃g,⋄k ). Ã

have discrete keyposes, rather than continuous and dense robot
states. Learning to predict keyposes is common in robotic
manipulation [32]–[35]. The policy needs to learn a mapping
from the initial observation Õ1 to all subsequent keyposes
Ã for two arms. The history horizon and prediction horizon
is 1 and K, respectively. In evaluation, the policy predicts
all actions to be executed conditioned only on an one-shot
observation {Õ1, S

L
1 , S

R
1 } at first sight.

Diffusion-based policy representation. Similar to [28],
[29], we utilize Denoising Diffusion Probabilistic Mod-
els (DDPMs) [86] to model the conditional distribution
p(Ãk|Õk). Starting from the random Gaussian noise ÃT

k ,
where T means diffusion steps, DDPM performs T iterations
of denoising to predict actions with decreasing levels of noise,
gradually from ÃT−1

k to Ã0
k. This process follows:

Ãt−1
k = α(Ãt

k − γεθ(Õk, Ã
t
k, t) +N (0, σ2, I)). (3)
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The policy finally outputs Ã0
k. Because point clouds are

used as the visual input instead of RGB images, we adopt
more robust SIM(3)-equivariant architectures [30], [89], rather
than policies based on CNNs [28] or transformers [29].
Formally, the noise prediction network εθ takes observation
Õk, noisy action Ãk and diffusion timestep t as input, and
predicts the gradient ▽E(Ãk) for denoising the noisy action
input. It first uses a modified PointNet-based [95] encoder
with SIM(3)-equivariance to encode visual observations. The
encoded visual features and positional embeddings of t are
passed to FiLM layers [96]. Then, the policy network applies a
convolutional U-Net [97] to process Ãk, t and the conditioned
observations to predict denoising gradients. Note that Õk, Ãk

and Ã0
k are processed to be invariant to scale and position.

Above-mentioned FiLM layers, convolutional U-net, and other
connecting layers are also modulated to be SO(3)-equivariant.
Please refer to [30], [89] for more details.

Customized bimanual diffusion policy. Since Ãk and
S⋄
k contain dual-arm actions in our task, it is important to

preprocess them appropriately. A vanilla approach is to pre-
dict all actions in each keyframe, including (ãp,Lk , ãr,Lk , ãg,Lk )

and (ãp,Rk , ãr,Rk , ãg,Rk ). This not only needs to re-splice the
position, rotation, and gripper data and modify the diffusion-
based policy network accordingly, but also learns redundant
actions for asynchronous tasks (as pointed out in Sec. IV-C),
which is inefficient and error-prone. To this end, we reorganize
the action space into A = {ÃL, ÃR} based on the motion
mask C according to Eqn. 2. A contains a series of time-
ordered single-arm actions, which is a mixture of the left
and right with removing potential redundancy. Taking the pull
drawer task as an example, a demonstration consists of 10
keyframes {ÃR

1 , Ã
R
2 , Ã

L
3 , Ã

R
4 , Ã

L
5 , Ã

L
6 , Ã

L
7 , Ã

L
8 , Ã

L
9 , Ã

R
10}. For

synchronous tasks, the left and right sides appear alternately.
In this way, we unify the policy network form of bimanual
tasks, which is also compatible with single-arm. More imple-
mentation details are in supplementary materials.

E. Visual Alignment for Pre-Grasping
In the deployment stage, once the trained bimanual diffusion

policy (BiDP) predicts a sequence of keyframe-based actions
conditioned on the initial observation Õ1, the system is capable
of completing a full manipulation task in an open-loop fashion.
That is, the robot executes pre-computed action sequence
Ã = {ã⋄k}Kk=1 without further feedback from the environ-
ment. While this paradigm is efficient, it lacks robustness in
dynamic or perturbed settings, particularly during the initial
grasping phase when object-robot interaction has not yet been
physically established. In contrast, fully closed-loop control
strategies (such as ACT [9] or Diffusion Policy [28]) employ
recurrent observe-infer-act cycles at every time step. However,
applying such feedback at all stages of long-horizon tasks can
be redundant and computationally demanding. We observe that
once the target object has been securely grasped, the relative
pose between the end-effector and object becomes fixed,
reducing the necessity for high-frequency visual feedback.
In this case, it is both safe and efficient to rely on either
the initial demonstration-aligned keyframes or model-inferred
trajectories for the subsequent execution.
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Fig. 4. Illustrations of the pre-grasping visual alignment applied to tasks
pouring water (left) and reorient board (right). It shows that we
can quickly adjust the grasp pose after the position and orientation of the
manipulated object changes. It is best to zoom in to view the details.

The critical phase, therefore, lies in ensuring robust align-
ment and correction during the pre-grasping stage, where dis-
turbances in object can significantly impact the manipulation
success. To address this, we propose a lightweight visual
alignment algorithm (refer illustrations in Fig. 4) that enables
closed-loop pre-grasping by aligning the current object pose
with the initial demonstrated configuration. Concretely, during
the one-shot demonstration, we record the 6-DoF grasp pose
ã⋄g=(ãp,⋄g , ãr,⋄g ) for the object original placement. At deploy-
ment time, when the same object is re-placed in a new position,
we estimate the relative transformation with respect to the
demonstrated pose. Given our tabletop workspace assumption,
this transformation is mostly constrained to planar translation
and in-plane rotation. To estimate them, we utilize a moment-
based alignment method [98], [99] derived from 2D binary
masks, which are segmented by employing VFMs [24], [25].
The geometric centroid of the mask provides the 2D projection
of object center, and its displacement from the demonstrated
mask yields (∆x,∆y) in pixel space. Through the known
hand-eye calibration matrix Tcam→ee, these pixel shifts are
accurately mapped to real-world distances in the robot end-
effector frame. For rotational alignment, we compute the
second-order image moments of the 2D mask and estimate
the principal axis direction. The difference in principal axis
orientation before and after perturbation provides ∆θ, which
is also converted into a rotation in the robot base frame. The
final grasping pose is then updated as:

â⋄g = ã⋄g ⊕ (T−1
cam→ee · T∆ ·Tcam→ee), (4)

where T∆=(∆x,∆y,∆θ) means the estimated planar trans-
formation, and ⊕ denotes pose composition in SE(3).

This proposed alignment strategy does not require CAD-
based 6D object pose estimators [100], nor does it rely on
generic 6-DoF grasp pose detectors [101] which are often task-
agnostic. Instead, it leverages task-specific grasp poses derived
from demonstration, which are semantically meaningful and
geometrically grounded. Furthermore, since no new deep mod-
els are introduced, the additional computational and memory
overhead is minimal, enabling fast perception-action loops
suitable for dynamic feedback. In experiments, we integrate
this pre-grasping visual alignment module into our framework
on both contralateral and humanoid dual-arm robots. Results
demonstrate robust closed-loop grasp correction in the pres-
ence of dynamic perturbations on objects, further enhancing
the reliability and transferability of YOTO++.
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TABLE II
DETAILED STATISTICS OF TEN BIMANUAL TASKS. THE † MEANS WE ONLY COUNT THESE AUTO-ROLLOUT DEMONSTRATIONS.

Task Names pull
drawer

unscrew
bottle

pour
water

insert
pen

reorient
board

flip
basket

uncover
lid

open
box

tool
spoon

tool
funnel

Is Synchronous? ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗
# Manipulated Objects 2 1 2 3 1 1 1 1 3 3

# Substeps 6 5 6 6 5 3 3 4 6 8
# Keyframes 10 12 11 11 10 8 12 16 13 19

Avg. Duration (s) 42 51 53 59 40 23 27 35 59 82
# Categories 9 | 3 6 6 | 3 3 | 3 5 3 5 4 1 | 1 | 1 1 | 1 | 1

# Demonstrations † 243 54 162 243 45 27 45 36 27 27
# Testing Trials 54 30 36 36 25 15 25 20 10 10

3 drawers

9 daily objects

6 bottles

3 mugs

6 bottles + 6 caps

4 delivery boxes 5 covered boxes

pull drawer pour waterunscrew bottle

uncover lid open boxflip basket 3 inverted objects 
(baskets/pillow)

reorient board
5 inverted 

objects 
(board/spoons

/shovels)

insert pen

3 cups

3 paired 
objects

tool spoon

tool funnel

1 spoon
1 big bowl

1 small bowl

1 funnel
1 bottle
1 mug

Fig. 5. We collected a variety of manipulated objects in instance-level for each of ten bimanual tasks to improve and verify the generalizability of trained
policies. All of these objects are from everyday life, not intentionally customized.

V. EXPERIMENTS

We aim to answer the following research questions. Q1:
What is the quality of our extracted hand motions? Q2: Can
the various strategies introduced in YOTO++ enable it to better
learn bimanual manipulation policies? Q3: Do trained BiDP
models generalize outside of the in-distribution domain? Q4: Is
the presented framework YOTO++ compatible with a variety
of long-horizon complex tasks? Q5: Does YOTO++ have good
closed-loop control capabilities that can resist disturbance?
Q6: Can YOTO++ be easily transferred to other dual-arm
robots with different structures?

A. Experiment Setups

1) Tasks: We evaluate YOTO++ on ten real-world bimanual
tasks. They collectively encompass two types of dual-arm
collaborations: strictly asynchronous and synchronous. The
manipulated objects in these tasks might be rigid, articulated or
non-prehensile. They also involve many primitive skills such
as pull/push, pick/place, re-orient, unscrew, revolve and lift
up. Some skills must require both arms to complete. More
importantly, all tasks are long-horizon, indicating that they are
quite complex due to containing multiple substeps

In the following, we explain each task in brief: 1⃝ pull
drawer: A drawer and a daily pocketed object. It consists
of 6 substeps including stable drawer (L), pull drawer (R),
pick up object (L), place object into drawer (L), stable drawer
(L), and push drawer (R). 2⃝ unscrew bottle: A capped
bottle with water. It consists of 5 substeps including pick up
bottle (L), bring bottle close to right arm (L), unscrew cap (R),
put down cap (R), and put down bottle (L). 3⃝ pour water:
A capless bottle with water and an empty mug. It consists of 6
substeps including pick up mug (R), pick up bottle (L), bring
mug close to bottle (R), pour bottle’s water into mug (L), put

down bottle (L), and put down mug (R). 4⃝ insert pen: A
handleless cup and two differently oriented pens/spoons/forks.
It consists of 6 substeps including pick up pen (R), pick
up cup (L), insert pen into cup (R), pick up another pen
(R), insert another pen into cup (R), and put down cup (L).
5⃝ reorient board: An inverted board/spoon/shovel. It

consists of 5 substeps including pick up board (R), reorient
board (R), grasp board (L), loosen board (R), and reorient
board to put down it (L). 6⃝ flip basket: An inverted
basket/pillow. It consists of 3 substeps including go to the
bottom part of basket (LR), lift up basket (LR), and put down
basket (LR). 7⃝ uncover lid: A rectangular box with
a top covered lid and no handles. It consists of 3 substeps
including go to the lower middle part of lid (LR), lift up lid
(LR), and put down lid to one side (LR). 8⃝ open box:
A delivery box with four handleable wings. It consists of
4 substeps including go close to two vertical wings (LR),
flick open two wings (LR), go close to two horizontal wings
(LR), and flick open two wings (LR). 9⃝ tool spoon: An
inverted spoon with two bowls of different sizes. It consists
of 6 substeps including pick up and reorient spoon (R), grasp
spoon (L), loosen spoon (R), reorient spoon to scoop water
from big bowl (L), reorient spoon to carry water to small
bowl (L), and reorient spoon to pour water into small bowl
(L). 10⃝ tool funnel:An inverted funnel, a bottle and a
mug. It consists of 8 substeps including pick up and reorient
funnel (R), grasp funnel (L), loosen funnel (R), reorient funnel
to insert it into bottle (L), reorient arm to pick up bottle (L),
pick up mug (R), bring bottle close to mug (L), and pour
mug’s water into bottle via funnel (R).

The statistics of these tasks are in Tab. II, where the number
of keyframes is counted based on the one-shot teaching.
Examples of each task are shown in Fig. 1 and Fig. 8.
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2) Demonstrations: Current imitation learning requires suf-
ficient training data, including diverse verified task trajectories,
to learn a closed-loop action prediction policy. To this end, as
described in Sec. IV-C, we start from a single-shot teaching
of every task and collect a considerable number of demonstra-
tions via the proposed rapid proliferation solution. Moreover,
to improve and evaluate the generalization of learned policies,
we have collected multiple objects within each task. All related
assets are shown in Fig. 5.

Specifically, we first implement the auto-rollout strategy
to collect real robot data. We set 3 (for tasks with multiple
objects) or 9 (for tasks with only one object) position varia-
tions for each manipulated object, and replace all alternatives
from the assets in each position. In this way, we get training
data with diverse positions and categories. The demonstration
number of every task is in the second to last row of Tab. II,
where we added statistics on their average duration. We then
processed these data into the form suitable for BiDP, including
extracting 3D point clouds of manipulated objects and saving
the corresponding multi-step end-effector keyposes. Note that
we also recorded the complete binocular video observation
and continuous robot actions during each auto-rollout, so that
we can reproduce mainstream policy learning methods [9],
[28]–[30] for comparison. Next, we applied 3D geometric
transformations to each demonstration, acting only on task-
relevant object point clouds. These synthetically augmented
data are only applicable to our proposed BiDP algorithm. After
formulating the script, we finally expanded the data volume
by 100 times, which results in 5K∼24K trajectories per task.
This magnitude is comparable to existing large-scale bimanual
teleoperation methods such as RDT [11] (6K+ self-created
episodes) and π0 [58] (5∼100 hours post-training data), but
our cost is extremely low.

3) Baselines: We compare our BiDP to four strong base-
lines. (1) Action Chunking Transformers (ACT) [9]. It is
proposed by ALOHA and uses a well-designed transformer
structure as the visual encoder. (2) Diffusion Policy (DP) [28].
The vanilla diffusion policy uses RGB images as inputs and
ResNet [102] as the visual encoder. We modified it by using
point cloud scenes as observations and a PointNet++ encoder
[95]. (3) 3D Diffusion Policy (DP3) [29]. It is a variant of
diffusion policy with a simpler point cloud encoder. It also
designs a two-layer MLP to encode robot proprioceptive states
before concatenating with the observation representation. (4)
EquiBot [30]. It takes the point cloud scene as observation,
and learns to predict continuous undecomposed 7-DoF actions
of dual arms. Note that these baselines, including our BiDP,
are designed to learn task-independent policies, and do not
consider the multi-task model currently.

4) Metrics: We train all methods for 500 or 1,000 epochs
and only save the last checkpoint for testing. We evaluate each
model with 5 trials for each single object or 2 trials for paired
objects in every task (refer the last row of Tab. II). Trails for
two tool-using tasks are 10. These objects have randomized
initial placements. For a more detailed comparison, we report
the average length (following CLAVIN [103]) in each substep
for a sequenced long-horizon task, where the last substep
indicates the final success rate. Although above tests have new

(a) Raw 3D Hand Points (b) Projected 2D Hand Points (c) Lifted Points in Keyframes

Fig. 6. Illustrations of extracted hand motion trajectories by using (a)
unprocessed raw 3D hand center points, (b) projected hand center points on
the 2D image, and (c) lifted 3D points in simplified keyframes. The first and
second line represents the task pull drawer and uncover lid, respectively.

TABLE III
ABLATION STUDIES OF PROPOSED STRATEGIES IN YOTO++ AND THE

BIMANUAL DIFFUSION POLICY (BIDP). THE TASK pull drawer WITH 243
EPISODES IS USED TO TRAIN ALL MODELS.

Ids
purely
object

observation

using
sparse

keyframes

reorganize
action
space

using
geometric
transforms

Success
Rate

Avg.
Len.

1 ✗ ✗ ✗ ✗ 13/54 (24.1%) 3.54
2 ✓ ✗ ✗ ✗ 26/54 (48.1%) 3.80
3 ✗ ✓ ✗ ✗ 28/54 (51.9%) 4.15
4 ✓ ✓ ✗ ✗ 31/54 (57.4%) 4.31
5 ✓ ✓ ✓ ✗ 33/54 (61.1%) 4.48
6 ✓ ✓ ✗ ✓ 42/54 (77.8%) 5.15
7 ✓ ✓ ✓ ✓ 43/54 (79.6%) 5.31
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Fig. 7. Ablation studies on expanded training data at different scales using
geometric transformations. The task pull drawer with 243 episodes is treated
as the not expanded version.

variations in object placements, we choose two tasks pull
drawer and uncover lid to perform more challenging
out-of-distribution (OOD) evaluations on novel objects. We
omit the last object or paired objects from the training set
and treat them as unseen objects to evaluate the final trained
model. The number of all OOD trials is quadrupled.

B. Results Comparison

Here, we answer the questions raised at the beginning one
by one, including basic in-distribution results and generaliza-
tions to out-of-distribution settings.

(Q1) Our extracted hand motions have good continuity
and consistency. We first discuss the quality of the extracted
motion trajectories, which is the core concept of this paper and
extremely important for the various strategies developed next.
As shown in Fig. 6, we compared the general effect of 3D hand
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TABLE IV
QUANTITATIVE RESULTS OF DETAILED LONG-HORIZON PERFORMANCE COMPARISONS (IN-DISTRIBUTION EVALUATIONS). THE STEP-WISE SUCCESS

RATES AND AVERAGE LENGTH OF COMPLETED TASK SEQUENCES ARE REPORTED. WE USE DIFFERENT COLORS SUCH AS TEAL, OLIVE AND PURPLE TO
INDICATE THAT EACH SUBSTEP CORRESPONDS TO THE LEFT ARM, RIGHT ARM AND BOTH ARMS, RESPECTIVELY.

Methods
pull drawer (243 episodes) unscrew bottle (54 episodes) pour water (162 episodes)

stable
drawer

pull
drawer

pick
object

place
object

stable
drawer

push
drawer

Avg.
Len.

pick
bottle

close to
right

unscrew
cap

place
cap

place
bottle

Avg.
Len.

pick
mug

pick
bottle

close to
bottle

pour
water

place
bottle

place
mug

Avg.
Len.

ACT 42/54 26/54 18/54 15/54 09/54 05/54 2.13 24/30 22/30 02/30 02/30 02/30 1.73 28/36 24/36 23/36 03/36 03/36 03/36 2.33
DP 43/54 26/54 15/54 11/54 10/54 06/54 2.06 26/30 26/30 06/30 06/30 06/30 2.33 30/36 29/36 29/36 06/36 06/36 06/36 2.94
DP3 52/54 36/54 28/54 15/54 11/54 09/54 2.80 27/30 27/30 06/30 06/30 05/30 2.37 33/36 31/36 31/36 08/36 08/36 07/36 3.28

EquiBot 53/54 44/54 36/54 24/54 21/54 13/54 3.54 28/30 28/30 08/30 07/30 06/30 2.57 32/36 30/36 30/36 11/36 10/36 09/36 3.39
BiDP 54/54 52/54 48/54 45/54 45/54 43/54 5.31 30/30 30/30 24/30 24/30 23/30 4.37 35/36 34/36 34/36 29/36 28/36 28/36 5.22

insert pen (243 episodes) reorient board (45 episodes) flip basket (27 episodes) uncover lid (45 episodes)
pick
pen

pick
cup

insert
pen

pick
pen+

insert
pen+

place
cup

Avg.
Len.

pick
board

reorient
board

grasp
board

loosen
board

place
board

Avg.
Len.

close to
basket

lift up
basket

place
basket

Avg.
Len.

close
to lid

lift up
lid

place
lid

Avg.
Len.

29/36 15/36 05/36 02/36 01/36 01/36 1.47 14/25 10/25 05/25 04/25 03/25 1.44 09/15 04/15 01/15 0.56 23/25 08/25 01/25 1.28
33/36 20/36 08/36 05/36 02/36 02/36 1.94 15/25 10/25 06/25 05/25 05/25 1.64 09/15 03/15 01/15 0.52 23/25 16/25 04/25 1.72
35/36 25/36 13/36 09/36 05/36 05/36 2.56 19/25 16/25 08/25 07/25 07/25 2.28 13/15 07/15 02/15 0.88 24/25 19/25 06/25 1.96
34/36 27/36 15/36 12/36 07/36 06/36 2.81 22/25 20/25 12/25 10/25 09/25 2.92 14/15 10/15 05/15 1.16 24/25 18/25 07/25 1.96
36/36 33/36 31/36 29/36 28/36 28/36 5.14 24/25 22/25 21/25 20/25 20/25 4.28 15/15 13/15 10/15 2.53 25/25 24/25 20/25 2.76

open box (36 episodes) tool spoon (27 episodes) tool funnel (27 episodes)
close to
wings

open
wings

close to
wings

open
wings

Avg.
Len.

pick
spoon

grasp
spoon

loosen
spoon

scoop
water

carry
water

pour
water

Avg.
Len.

pick
funnel

grasp
funnel

loosen
funnel

insert
funnel

pick
bottle

pick
mug

close
to mug

pour
water

Avg.
Len.

15/20 05/20 05/20 00/20 1.25 03/10 02/10 01/10 00/10 00/10 00/10 0.60 04/10 02/10 00/10 00/10 00/10 00/10 00/10 00/10 0.60
19/20 07/20 06/20 03/20 1.75 04/10 02/10 02/10 00/10 00/10 00/10 0.80 05/10 02/10 02/10 00/10 00/10 00/10 00/10 00/10 0.90
20/20 08/20 08/20 04/20 2.00 07/10 04/10 04/10 01/10 01/10 00/10 1.70 08/10 05/10 04/10 01/10 01/10 00/10 00/10 00/10 1.90
20/20 10/20 09/20 04/20 2.35 08/10 05/10 05/10 02/10 02/10 01/10 2.30 08/10 06/10 05/10 02/10 01/10 00/10 00/10 00/10 2.20
20/20 19/20 19/20 14/20 3.60 10/10 08/10 08/10 06/10 06/10 05/10 4.30 09/10 08/10 08/10 05/10 04/10 04/10 04/10 03/10 4.50

TABLE V
COMPARISON OF THE AVERAGE SUCCESS RATE OF VARIOUS METHODS ON

ALL TEN TASKS (IN-DISTRIBUTION EVALUATIONS).

Methods ACT DP DP3 EquiBot BiDP
Average

Success Rate 4.97% 11.10% 15.20% 21.31% 65.85%

TABLE VI
QUANTITATIVE RESULTS OF DETAILED LONG-HORIZON PERFORMANCE

COMPARISONS (OUT-OF-DISTRIBUTION EVALUATIONS). THE SUBSTEPS
ARE ABBREVIATED AS SEQUENTIAL NUMBERS.

Methods

pull drawer
(144 episodes)

uncover lid
(36 episodes) Average

Success
RateS1 S2 S3 S4 S5 S6 Avg.

Len. S1 S2 S3 Avg.
Len.

ACT 2/8 0/8 0/8 0/8 0/8 0/8 0.25 12/20 00/20 00/20 0.60 0.0%
DP 5/8 1/8 0/8 0/8 0/8 0/8 0.75 14/20 01/20 00/20 0.75 0.0%

DP3 5/8 1/8 1/8 0/8 0/8 0/8 0.88 15/20 02/20 00/20 0.85 0.0%
EquiBot 5/8 3/8 3/8 3/8 3/8 1/8 2.25 17/20 09/20 01/20 1.25 8.8%

BiDP 8/8 6/8 6/8 5/8 5/8 4/8 4.25 18/20 12/20 04/20 1.70 35.0%

motion trajectories extracted using different methods in two
different long-horizon bimanual tasks. Firstly, when directly
applying advanced 3D hand mesh reconstruction methods (ei-
ther HaMeR [20] or WiLoR [18]), the resulting hand trajectory
is always unstable and difficult to parse (see Fig. 6 (a)). This is
mainly because most of these methods are based on monocular
images, and the preset camera parameters such as focus and
focal length are directly calculated using the center and size of
each image. This makes the estimation results for consecutive
frames in the video not in a unified and invariant camera space,
and therefore unreliable and ambiguous in depth. Nevertheless,
this intuitive but sub-optimal approach is still widely used by
mainstream methods for learning from human videos [15],
[17], [61]. In comparison, after projecting these 3D points
onto a 2D image plane (with the Z-axis set to 0 for ease
of visualization), it is clear that the trajectory trends and

estimated motion flow are improved (see Fig. 6 (b)). This
conclusion is generally applicable, for tasks like ours where the
camera is stationary and its intrinsic and extrinsic parameters
are known. Finally, as described in Sec. IV-B, we filter out
sparse keyframes from these continuous points and lift the
corresponding position components into 3D points to obtain
the keyposes suitable for the end-effector (see Fig. 6 (c)). We
thus claim that our extracted hand motion trajectory based on
an one-shot human teaching has a more guaranteed quality.
And we expect that this motion extraction technology will
be used for retargeting to other more dexterous end-effectors,
such as multi-fingered hands.

(Q2) The various strategies we propose in YOTO++
are effective. After extracting primary keyposes that could
be successfully injected into the robot, we continue to explore
YOTO++ including other strategies, which are closely related
to the visuomotor policy learning. As shown in Tab. III,
we quantitatively illustrate the effectiveness of each strategy
one by one through many ablation studies. We experimented
with task pull drawer which has 243 training trajectories.
First, the method (id-1) without any proposed strategy can be
regarded as the vanilla EquiBot [30], which takes the entire
point cloud scene as observation, learns to predict continuous
actions, models paired end-effector poses and leverages non-
augmented training demonstrations. Despite being a solid
baseline, it performed the worst on this challenging long-
horizon task. Next, we replaced the input with point clouds
containing only manipulated objects (id-2) or predicted sim-
plified sparse keyposes (id-3), and the success rate and average
execution length of the task were improved. These results
suggest that reducing unnecessary distractions in the input
and learning fewer simplified actions are the right direction.
When both are used together (id-4), better performance can
be achieved. Based on these two strategies, we decoupled



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2025 11

pull drawer pour waterunscrew bottle uncover lid open boxflip basketreorient boardinsert pen

tool funnel

tool spoon

Fig. 8. Visualization of ten bimanual tasks performed on real robots. We use different colors such as teal, olive and purple to distinguish frames of left arm,
right arm and both arms, respectively. Arrows are artificially added to show movement trends. It is best to zoom in to view the details.

the output action space and reconstructed it into a single-arm
format (id-5), the policy could also be superior, indicating the
importance of eliminating redundant actions. Alternately, if
3D geometric transformations were applied to further expand
training demonstrations (id-6), the resulting model effect was
much better, with the most prominent growth. This proves
that our developed demonstration proliferation is simple yet
efficient. We accordingly show in Fig. 7 the typical trend that
using more extended training data leads to better performance,
which is consistent with our consensus. Finally, combining the
above strategies together (id-7), our BiDP takes full advantage
of all the strengths and has achieved the best results.

On the other hand, we need to compare and explain whether
BiDP is better than other visuomotor imitation methods [9],
[28]–[30] on more bimanual tasks. As shown in Tab. IV,
following the mainstream in-distribution setting, we performed
extensive policies training and real robot evaluations on ten
long-horizon tasks, and reported a detailed performance com-
parison of various methods. Generally speaking, we can draw

three conclusions from these quantitative data. (1) First, the
diffusion-based strategy always performed better than the
transformer-based ACT. This is mainly because the diffusion
model can model a higher-dimensional action space and is
highly malleable, while transformer architectures usually do
not have these characteristics and require a large amount of
data to achieve scale effects and gain advantages. In addition,
ACT utilizes 2D images as observations instead of 3D input,
which also makes it achieve inferior results. (2) Second, a more
advanced and sophisticated 3D observation perception archi-
tecture can lead to higher policy performance. For example,
compared to the modified DP that directly uses PointNet++ to
process 3D point cloud input, DP3 and EquiBot adopt a self-
designed lightweight MLP encoder and SIM(3)-equivariant
backbone to extract point cloud features, respectively, and
always achieved better results. (3) Finally, for more complex
long-horizon bimanual manipulation tasks (such as flipping
and tool-using), the existing state-of-the-art methods still have
a lot of room for improvement, such as the gradually decaying
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unscrewing bottle pouring water scooping peanut dumping plum unfolding cloth stirring liquid bi-holding bowl handover bowl

Fig. 9. Illustrations of another super long-horizon bimanual task containing various atomic skills. Top: the visualization of hand motions extraction. Bottom:
the corresponding rollout examples by injecting actions on real robots. Refer to Fig. 1 and Fig. 8 for notes on different colors and curves.

Fig. 10. Example of dynamic interferences during the pre-grasping stage for tasks unscrew bottle (top row) and pour water (bottom row), where
each object is manually disturbed with one, two or three times. The red arrow indicates the direction of the manually moved object (interfering). The teal
arrow and olive arrow indicate the movement direction of the left and right robotic arms (chasing) respectively.

effect over multiple substeps and less exploration of efficient
utilization of training data. Thanks to the proposed multiple
strategies, our BiDP can better cope with bimanual tasks,
significantly better than all compared policies. We summarized
the average success rate of each method on all ten tasks in
Tab. V, where our method BiDP achieved a success rate of
nearly 66%, demonstrating good potential for practical robotic
applications. To sum up, it can be concluded that the various
strategies we proposed in YOTO++ are quite effective.

(Q3) BiDP has satisfactory out-of-domain generalization
ability. To further illustrate the superiority of BiDP, we de-
signed tests under out-of-distribution (OOD) settings. Results
are shown in Tab. VI. From it, we can see that, except for
our method and EquiBot, the performance of the other three
methods has dropped significantly when it comes to OOD
setups, showing poor generalization to unseen objects. Com-
paring to EquiBot, our BiDP still has a clear advantage, thanks
to the fact that we use explicit 3D geometric transformations
for expanding the training demonstrations instead of SIM(3)-
equivariant augmentation of the entire point cloud input in
EquiBot. In addition, using pure object point clouds as input
also makes our model more robust compared to all baselines.
The core idea here is to rely on the still rapidly developing
capabilities of vision foundation models, such as the open vo-
cabulary detection [24] and segmentation [25], to more reliably
perceive various unseen scenes and objects. In summary, these
results verify that our BiDP indeed outperforms prior methods
with the least amount of performance degradation in OOD
generalization.

(Q4) YOTO++ is widely applicable to diverse biman-
ual tasks. Our proposed YOTO++ is compatible with most
bimanual tasks, such as the selected ten representative long-
horizon tasks, covering a variety of skills, multi-object per-
ception, dual-arm coordinated processing, intricate motion
trajectories, and varying execution substeps. In addition to

TABLE VII
THE SUCCESS RATE OF PRE-GRASPING (P-G) AND FULLY COMPLETING

(F-C) TASK UNDER DIFFERENT TIMES OF DYNAMIC DISTURBANCE.

Tasks Success
Rate

Dynamic Disturbance Times
#1 #2 #3 #4 #5

unscrew
bottle

P-G
F-C

28/30
23/30

27/30
23/30

27/30
22/30

24/30
20/30

21/30
17/30

pour
water

P-G
F-C

34/36
28/36

34/36
27/36

33/36
26/36

30/36
23/36

26/36
20/36

reorient
board

P-G
F-C

23/25
20/25

23/25
19/25

22/25
19/25

20/25
17/25

16/25
14/25

tool
spoon

P-G
F-C

08/10
05/10

08/10
05/10

08/10
04/10

06/10
02/10

04/10
02/10

Avg. SR. P-G
F-C

89.9%
71.1%

89.1%
69.4%

87.4%
65.4%

75.8%
54.6%

61.6%
47.1%

above-mentioned quantitative results (Tab. IV and Tab. V),
we also qualitatively demonstrate the visual effects of real
robot execution on ten tasks in Fig. 8, mainly showing sparse
keyframes contained in them. We can see that the two robot
arms have learned the movements demonstrated by human
hands and complete these complex tasks in an orderly manner.

Moreover, we selected a typical super long-horizon biman-
ual task (snack making) and enabled the dual-arm robot
to learn new given goals quickly and easily through one-
shot human teaching. Due to space limitations, we did not
continue the demonstration proliferation and policy training.
The illustrations of extracted actions that can be injected into
real robots are shown in Fig. 9. These results further reveal the
simplicity, versatility and scalability of YOTO++. In the future,
we will explore using YOTO++ to handle more intricate,
valuable, but less researched bimanual tasks.

(Q5) YOTO++ can achieve good anti-interference effect
in the pre-grasping stage. To evaluate the effectiveness
of our vision-guided pre-grasping algorithm, we conducted
controlled tests on four bimanual tasks under varying levels
of external disturbances, as summarized in Tab. VII. The
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unscrew 
bottle

pour
water

Fig. 11. Illustrations of two selected bimanual tasks transferred to the humanoid robot. Top Row: the visualization of hand motions extraction. Bottom Row:
the corresponding rollout examples by injecting actions on real robots. Refer to Fig. 1 and Fig. 8 for notes on different colors and curves.

Fig. 12. Example of dynamic interferences during the pre-grasping stage for tasks unscrew bottle (top row) and pour water (bottom row) on the
new humanoid dual-arm robot. Here, each object is manually disturbed with one or two times. Refer to Fig. 10 for notes on different colors of arrows.

evaluation criteria remain consistent with those used in the
in-distribution setting (Tab. IV), except that we adopt a hybrid
control strategy: the closed-loop pre-grasping alignment, while
the remainder of the task follows open-loop execution. This
hybrid scheme is designed to balance robustness and effi-
ciency, offering an advantage over full closed-loop alternatives,
as further evidenced by the quantitative trends.

Overall, as the number of injected perturbations increases
from 1 to 5, both the success rate of pre-grasping and overall
task completion show a gradual decline, which is expected.
However, the gap between successful grasping and final task
success remains consistently small across all conditions, high-
lighting the critical role of the pre-grasping phase. These re-
sults indicate that once a stable grasp is established (effectively
treating the gripper and object as a rigid composite), the rest of
the task proceeds reliably under open-loop control. Comparing
with the full closed-loop baseline BiDP from Tab. IV, we
observe that our hybrid approach often achieves higher task
success rates under light-to-moderate interference (1∼3 distur-
bances). This is largely due to the fact that, during disturbance
injection, the robot arm has already partially approached
the object, reducing the likelihood of collision and enabling
more accurate alignment. As disturbance frequency increases,
however, error accumulation and partial occlusion by the
approaching arm degrade performance slightly. Additionally,
qualitative results in Fig. 10 illustrate the pre-grasp alignment
process under ongoing perturbations, further validating the
robustness of our method. Together, these findings demonstrate
that the designed closed-loop pre-grasping module effectively
mitigates one of the most fragile phases in bimanual manip-
ulation (e.g., the initial object contact) thereby contributing
significantly to overall task robustness.

(Q6) YOTO++ can be seamlessly transferred to a
new humanoid dual-arm robot. Our YOTO++ is inherently
hardware-agnostic by design. Since human-demonstrated dual-
hand trajectories are extracted and encoded in a robot-agnostic

space, they can be injected into any dual-arm robotic system
as long as the actions remain within its reachable workspace.
To validate this, we deploy YOTO++ on a structurally differ-
ent humanoid dual-arm robot (see Fig. 1, lower-left), which
features an anthropomorphic layout more common in general-
purpose platforms (discussed in Sec. III).

In this setup, we retain the original hardware assumptions:
parallel-jaw grippers and a third-view binocular stereo camera.
Without retraining, we directly reuse the motion extraction and
injection module to transfer human-demonstrated actions onto
the new platform. We evaluate this setup on two representative
tasks unscrew bottle and pour water, both requiring
precise coordination and long-horizon planning. As shown in
Fig. 11, the system continues to robustly extract dual-hand
trajectories and execute keyframe-based actions on the new
robot, confirming the successful transfer of core capabilities.
Furthermore, in scenarios where object variation is limited
(i.e., intra-instance consistency), we observe that the visual
alignment module introduced in Sec. IV-E remains effective.
As shown in Fig. 12, YOTO++ can still achieve the train-
free closed-loop pre-grasping, followed by direct replay of
the demonstrated action sequence, completing the task without
additional adaptation. These results provide strong empirical
evidence for its cross-embodiment generality and practical
deployability across diverse dual-arm robotic systems.

VI. CONCLUSION AND LIMITATION

In this paper, we propose a novel framework named
YOTO++ to address the challenge of efficient and robust
bimanual manipulation. Our approach learns from one-shot hu-
man video demonstrations, using vision techniques to extract
fine-grained and consecutive hand features such as pose, joints,
and contact states. To ensure stable and precise execution, we
simplify noisy hand trajectories into discrete keyframes and
introduce a motion mask to regulate dual-arm coordination. On
top of this, we develop a scalable demonstration proliferation
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strategy that combines real-world auto-rollout and geometric
transformation to generate diverse training data efficiently.
With this enriched dataset, we train a dedicated bimanual
diffusion policy (BiDP) that simplifies visual inputs, predicts
task-relevant keyposes, and reorganizes action spaces for more
tractable learning. In this extended version, we further demon-
strate the broad generalization of YOTO++ by introducing
more tasks involving new atomic skills and tool usage, re-
vealing its strong spatial-temporal consistency in multi-stage
manipulation. We also integrate a lightweight visual alignment
module for closed-loop pre-grasping correction, enabling ro-
bustness against dynamic disturbances. Finally, we validate the
cross-embodiment applicability of YOTO++ by transferring it
to a humanoid dual-arm platform without retraining. These
contributions together form a unified and practical solution
for scalable, robust, and generalizable bimanual manipulation,
advancing the frontier of imitation learning in real robots.

Limitation: Although YOTO++ has achieved impressive
performance on various long-horizon bimanual manipulation
tasks, we conclude that it has at least the following limitations.
(1) Our vision-based hand trajectory extraction schemes have
inherent errors. This means that we have to check carefully
and verify on the real robot whether the extracted position and
posture information is reliable, which still requires additional
manpower. (2) The primary version of YOTO++ adopts a
fixed workbench, which limits its flexibility and accessibility.
In the future, we may consider using mobile bases, such as
wheeled carts or multi-legged robots. (3) The equipped parallel
gripper is not flexible enough and has limited functionality.
Upgrading the end-effector to a multi-fingered dexterous hand
or equipping it with force-tactile sensors can make the robot
more versatile and powerful. (4) More ultra-difficult bimanual
tasks are still under-explored, such as specialized tool-based
manipulation (e.g., picking up a hammer to pound a nail or
twisting a screwdriver to tighten a screw), highly dynamic non-
quasi-stationary tasks, and friendly interactive collaboration
with people. In short, these limitations highlight the need for
further innovations to enhance robustness, generalization, and
scalability in bimanual robotic manipulation.
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